BOC Sciences draws on our expertise and technology to offer a wide range of high-quality diagnostic probes to meet the needs of research and industry from R&D to production.
MGB (Minor Groove Binder) probes are specialized probes for nucleic acid detection and are widely used in nucleic acid amplification techniques such as real-time polymerase chain reaction (real-time PCR). MGB probes are commonly used to detect and measure the presence of target DNA or RNA sequences and are useful for enhancing the specificity and sensitivity of PCR.
Fig 1. Structure and mechanism of action of MGB-probes. (Navarro et al., 2015)
The design and synthesis of MGB probes are based on the DNA hybridization chain reaction (HCR), a signal amplification technique based on DNA's catalytic mechanism, in which two DNA single strands of a probe are designed and synthesized to hybridize with each other to form a stem-and-loop structure that triggers the subsequent amplification of the signal. MGB probes, on the other hand, are based on HCR, which adopts a four-stranded structure for the stem of the single strand of probe DNA, thus improving the stability and specificity of the probes.
However, the following factors need to be considered when performing the design process of MGB probes.
With our unique supply capabilities, BOC Sciences' laboratories can provide oligonucleotide synthesis with consistent quality at every stage of development. By manufacturing our dye phosphoramidites, CPGs, linker phosphoramidites, etc., we can ensure that projects are scaled up from inception to commercial scale.
Reference
GMP Oligonucleotide Manufacturing Service
For more than 15 years, BOC Sciences has been manufacturing oligonucleotides for pre-clinical, pharmaceutical, food safety, and animal health industries. We provide customized and flexible oligonucleotide GMP or non-GMP production services to meet different production needs.
Lipid Nanoparticle(LNP) for RNA Delivery
BOC Sciences offers comprehensive LNP- mRNA delivery services tailored to meet the specific needs of mRNA vaccine development. Our expertise in nanoparticle formulation and mRNA chemistry enables us to design custom LNP formulations optimized for stability, efficacy, and safety.
BOC Sciences promises to offer you with GalNAc-siRNA conjugation services to help you conduct further research on GalNAc-siRNA conjugates and explore their mores omnics capabilities, the working mechanism as well as their potential therapeutic profiles.
BOC Sciences offers aptamer customization services to generate high-quality aptamers tailored to your goals, delivering excellent results even for the most difficult target molecules.
Peptide-Oligonucleotide Conjugation
BOC Sciences is committed to providing our customers with comprehensive modification and labeling, offering affordable custom oligonucleotides or peptide-oligonucleotide conjugates.