DNA-Directed RNA Interference (ddRNAi) Services

DNA-Directed RNA Interference (ddRNAi) Services

The DNA-Directed RNA Interference (ddRNAi) service provided by BOC Sciences is an improved service based on RNAi technology. ddRNAi service includes gene silencing, gene expression regulation, etc., which can be widely used in disease modeling and drug discovery.

What is DNA-Directed RNA Interference (ddRNAi)?

DNA-Directed RNA Interference (ddRNAi) is a gene silencing technique used to inhibit the expression of specific genes. ddRNAi methodology relies on the use of an introduced DNA template to utilize the cell's endogenous transcriptional machinery to produce a short hairpin RNA (shRNA), which is then processed by the endogenous RNAi machinery into a siRNA. Once the siRNA is loaded into the RNA-induced silencing complex (RISC), the corresponding antisense strand can bind to the target RNA, ultimately leading to the loss of the messenger RNA. Since no mRNA species can be translated into protein, the net effect of RNAi is to induce a loss of gene expression of the target gene.

How ddRNAi Works?

ddRNAi works by introducing DNA sequences of specific genes into cells and transcribing them into RNA molecules. The antisense sequences in these RNA molecules can be complementarily paired with the mRNA sequences of the target gene and form an RNA double-stranded structure. Then, these small molecules can further form RISC and recognize and target the corresponding mRNAs in the cell through the guidance of RISC, leading to the degradation or inhibition of the target gene. As a result, the expression level of the target gene will decrease, thus realizing the effect of gene silencing.

BOC Sciences' ddRNAi Service

BOC Sciences' ddRNAi service provides a precise, long-lasting, and efficient approach to gene silencing and expression regulation. The gene silencing service can be realized under the mediation of siRNA, and then, by adjusting the design of ddRNAi constructs, gene expression can be enhanced or suppressed. Gene expression can be enhanced or suppressed by adjusting the design of ddRNAi constructs.

  • siRNA-mediated Gene Silencing Service
    ddRNAi uses a DNA template to generate siRNAs that enable the silencing of target genes. The process involves: first, dsRNA (double-stranded RNA) precursors are prepared. Then, the dsRNA is cleaved into short siRNAs that are partially complementarily paired with the target mRNA subunit in a RISC complex. Finally, the RISC complex inhibits the expression of the target mRNA by degradation or inhibition of translation. In contrast to conventional RNAi technology, ddRNAi generates siRNAs through DNA molecules rather than introducing siRNA molecules directly.
  • Adapting Design Services for ddRNAi Constructs
    In order to achieve effective ddRNAi, appropriate constructs need to be designed. The following are the requirements of the constructs.
Suitable promotersThe promoter is the region used to drive the expression of the ddRNAi construct, and a strong promoter can produce higher levels of ddRNAi.
Formation of short circular RNA structuresSequences in ddRNAi constructs should form a short circular RNA structure (consisting of an antisense strand and a linker strand).
Length/sequence of linker and antisense strandThe length of the linker and antisense strand should be between 15-30 base pairs to ensure that it is long enough to form a stable loop structure.
Background vectorsddRNAi constructs often need to be cloned into appropriate background vectors to facilitate expression and delivery in target cells.

Advantages of BOC Sciences' ddRNAi Service

  • Utilizes cellular mechanisms within diseased cells to generate a self-replenishing supply of short hairpin RNAs at the steady-state level.
  • Multiple genes, including genes from different pathways, can be silenced simultaneously from the same vector.
  • Depending on the size of the target gene, ddRNAi vectors can be programmed to use shRNA to knock down the expression of disease-causing proteins while using additional packaging capacity to express a normal copy of the same gene, thereby restoring function.
* Only for research. Not suitable for any diagnostic or therapeutic use.
Online Inquiry
Verification code
Event information
Inquiry Basket