5'-O-DMT-N4-Benzoyl-2'-deoxy-2'-fluoro-cytidine phosphoramidite

5'-O-DMT-N4-Benzoyl-2'-deoxy-2'-fluoro-cytidine phosphoramidite - CAS 161442-19-9

Catalog number: BRA-024

A novel nucleoside phosphoramidite with anticancer and antiviral properties.

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.
Synonyms
2'-Fluoro-N4-benzoyl-5'-O-DMT-2'-deoxycytidine-3'-ce-phosphoramidite; Cytidine, N-​benzoyl-​5'-​O-​[bis(4-​methoxyphenyl)​phenylmethyl]​-​2'-​deoxy-​2'-​fluoro-​, 3'-​[2-​cyanoethyl N,​N-​bis(1-​methylethyl)​phosphoramidite]; 2'-F-Bz-dC Phosphoramidite; N4-Benzoyl-2'-deoxy-5'-O-DMT-2'-fluoro-cytidine phosphoramidite; N-Benzoyl-5'-O-[bis(4-methoxyphenyl)phenylmethyl]-2'-deoxy-2'-fluorocytidine 3'-[2-cyanoethyl N,N-bis(1-methylethyl)phosphoramidite]
CAS
161442-19-9
IUPAC Name
N-[1-[(2R,3R,4R,5R)-5-[[bis(4-methoxyphenyl)-phenylmethoxy]methyl]-4-[2-cyanoethoxy-[di(propan-2-yl)amino]phosphanyl]oxy-3-fluorooxolan-2-yl]-2-oxopyrimidin-4-yl]benzamide
Molecular Weight
851.90
Molecular Formula
C46H51FN5O8P
Canonical SMILES
CC(C)N(C(C)C)P(OCCC#N)OC1C(OC(C1F)N2C=CC(=NC2=O)NC(=O)C3=CC=CC=C3)COC(C4=CC=CC=C4)(C5=CC=C(C=C5)OC)C6=CC=C(C=C6)OC
InChI
InChI=1S/C46H51FN5O8P/c1-31(2)52(32(3)4)61(58-29-13-27-48)60-42-39(59-44(41(42)47)51-28-26-40(50-45(51)54)49-43(53)33-14-9-7-10-15-33)30-57-46(34-16-11-8-12-17-34,35-18-22-37(55-5)23-19-35)36-20-24-38(56-6)25-21-36/h7-12,14-26,28,31-32,39,41-42,44H,13,29-30H2,1-6H3,(H,49,50,53,54)/t39-,41-,42-,44-,61?/m1/s1
InChIKey
CKKJPMGSTGVCJJ-GNUWXFRUSA-N
Purity
≥98% by HPLC

Chemical Structure:

Reference Reading

1. On-demand synthesis of phosphoramidites
Alexander F Sandahl, Thuy J D Nguyen, Rikke A Hansen, Martin B Johansen, Troels Skrydstrup, Kurt V Gothelf. Nat Commun. 2021 May 12;12(1):2760. doi: 10.1038/s41467-021-22945-z.
Automated chemical synthesis of oligonucleotides is of fundamental importance for the production of primers for the polymerase chain reaction (PCR), for oligonucleotide-based drugs, and for numerous other medical and biotechnological applications. The highly optimised automised chemical oligonucleotide synthesis relies upon phosphoramidites as the phosphate precursors and one of the drawbacks of this technology is the poor bench stability of phosphoramidites. Here, we report on the development of an on-demand flow synthesis of phosphoramidites from their corresponding alcohols, which is accomplished with short reaction times, near-quantitative yields and without the need of purification before being submitted directly to automated oligonucleotide synthesis. Sterically hindered as well as redox unstable phosphoramidites are synthesised using this methodology and the subsequent couplings are near-quantitative for all substrates. The vision for this technology is direct integration into DNA synthesisers thereby omitting manual synthesis and storage of phosphoramidites.
2. Chemical Synthesis of Modified Oligonucleotides Containing 5'-Amino-5'-Deoxy-5'-Hydroxymethylthymidine Residues
Akihiro Ohkubo, Kousuke Muto, Rintaro Watanabe, Daisuke Ogata. Curr Protoc. 2021 Mar;1(3):e70. doi: 10.1002/cpz1.70.
Introduction of cationic modifications into an oligonucleotide can increase its nuclease resistance and duplex- or triplex-forming abilities. In a recent study, we found that the nuclease resistance and RNA binding selectivity of an oligonucleotide containing a 5'-(R)-amino-5'-deoxy-5'-(R)-hydroxymethylthymidine residue were greater than those of the unmodified oligonucleotide. In this article, we describe the synthesis of 5'-amino-5'-deoxy-5'-hydroxymethylthymidine via dihydroxylation of the 5'-alkene derivative using either of two commercial AD (asymmetric dehydroxylation) mixes or via epoxidation and ring opening. We also provide detailed protocols for the syntheses of oligonucleotides containing 5'-amino-5'-deoxy-5'-hydroxymethylthymidine residues. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of 5'-amino-5'-deoxy-5'-hydroxymethylthymidine phosphoramidites 9a and 9b Basic Protocol 2: Synthesis of oligonucleotides 1 and 2 containing 5'-amino-5'-deoxy-5'-hydoxymethylthymidine residues (R T and S T).
3. Synthesis of 5-Cyanomethyluridine (cnm5 U) and 5-Cyanouridine (cn5 U) Phosphoramidites and Their Incorporation into RNA Oligonucleotides
Song Mao, Hsu-Chun Tsai, Jia Sheng. Curr Protoc Nucleic Acid Chem. 2020 Sep;82(1):e114. doi: 10.1002/cpnc.114.
This article contains detailed synthetic protocols for preparation of 5-cyanomethyluridine (cnm5 U) and 5-cyanouridine (cn5 U) phosphoramidites. The synthesis of the cnm5 U phosphoramidite building block starts with commercially available 5-methyluridine (m5 C), followed by bromination of the 5-methyl group to install the cyano moiety using TMSCN/TBAF. The cn5 U phosphoramidite is obtained by regular Vorbrüggen glycosylation of the protected ribofuranose with silylated 5-cyanouracil. These two modified phosphoramidites are suitable for synthesis of RNA oligonucleotides on solid phase using conventional amidite chemistry. Our protocol provides access to two novel building blocks for constructing RNA-based therapeutics. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of cnm5 U and cn5 U phosphoramidites Basic Protocol 2: Synthesis, purification, and characterization of cnm5 U- and cn5 U-modified RNA oligonucleotides.
Related Products
Online Inquiry
Verification code
Inquiry Basket