5'-DMT-dA(Bz) CPG; 1400 Å

5'-DMT-dA(Bz) CPG; 1400 Å

Catalog number: BRL-018

5'-DMT-dA(Bz) CPG is a CPG used for incorporating unmodified dA at the 3' end of an oligonucleotide.

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.
Appearance
White powder
Storage
+2 to +8 °C.
Shipping
Room temperature.
Cleavage Conditions
Use concentrated ammonia for 90 min at 25°C or 30 min at 60°C, or 1:1 ammonia:methylamine (AMA) for 25 min at 25°C when using fast deprotecting amidites.
Deprotection Conditions
When using fast deprotecting amidites (e.g., C-Ac; G-DMF; G-PAC), please use concentrated ammonia for 1h or AMA for 30 min at 60°C. When using standard amidites (e.g., C-Bz; G-iBu), please use concentrated ammonia for 5h at 60°C.

Reference Reading

1. Novel eGZ-motif formed by regularly extruded guanine bases in a left-handed Z-DNA helix as a major motif behind CGG trinucleotide repeats
Ashkan Fakharzadeh, Jiahui Zhang, Christopher Roland, Celeste Sagui. Nucleic Acids Res. 2022 May 20;50(9):4860-4876. doi: 10.1093/nar/gkac339.
The expansion of d(CGG) trinucleotide repeats (TRs) lies behind several important neurodegenerative diseases. Atypical DNA secondary structures have been shown to trigger TR expansion: their characterization is important for a molecular understanding of TR disease. CD spectroscopy experiments in the last decade have unequivocally demonstrated that CGG runs adopt a left-handed Z-DNA conformation, whose features remain uncertain because it entails accommodating GG mismatches. In order to find this missing motif, we have carried out molecular dynamics (MD) simulations to explore all the possible Z-DNA helices that potentially form after the transition from B- to Z-DNA. Such helices combine either CpG or GpC Watson-Crick steps in Z-DNA form with GG-mismatch conformations set as either intrahelical or extrahelical; and participating in BZ or ZZ junctions or in alternately extruded conformations. Characterization of the stability and structural features (especially overall left-handedness, higher-temperature and steered MD simulations) identified two novel Z-DNA helices: the most stable one displays alternately extruded Gs, and is followed by a helix with symmetrically extruded ZZ junctions. The G-extrusion favors a seamless stacking of the Watson-Crick base pairs; extruded Gs favor syn conformations and display hydrogen-bonding and stacking interactions. Such conformations could have the potential to hijack the MMR complex, thus triggering further expansion.
2. Hierarchical network of pulse coupled chemical oscillators with adaptive behavior: Chemical neurocomputer
Vladimir K Vanag. Chaos. 2019 Aug;29(8):083104. doi: 10.1063/1.5099979.
We consider theoretically a network of pulse coupled oscillators with time delays. Each oscillator is described by the Oregonator-like model for the Belousov-Zhabotinsky (BZ) reaction. Different groups of oscillators constitute five functional units: (1) a central pattern generator (CPG), (2) a "reader" unit that can identify dynamical modes of the CPG, (3) an antenna (A) unit that receives external signals and responds on them by generating different dynamical modes, (4) another reader unit for identification of the dynamical modes in the A unit, and (5) a decision making unit that switches the current dynamical mode of the CPG to the mode that is similar to the current mode in the A unit. We call this network a chemical neurocomputer, since chemical BZ reaction occurs in each micro-oscillator, while pulse connectivity of these cells is inspired by the brain.
3. Recognition of non-CpG repeats in Alu and ribosomal RNAs by the Z-RNA binding domain of ADAR1 induces A-Z junctions
Parker J Nichols, Shaun Bevers, Morkos Henen, Jeffrey S Kieft, Quentin Vicens, Beat Vögeli. Nat Commun. 2021 Feb 4;12(1):793. doi: 10.1038/s41467-021-21039-0.
Adenosine-to-inosine (A-to-I) editing of eukaryotic cellular RNAs is essential for protection against auto-immune disorders. Editing is carried out by ADAR1, whose innate immune response-specific cytoplasmic isoform possesses a Z-DNA binding domain (Zα) of unknown function. Zα also binds to CpG repeats in RNA, which are a hallmark of Z-RNA formation. Unexpectedly, Zα has been predicted - and in some cases even shown - to bind to specific regions within mRNA and rRNA devoid of such repeats. Here, we use NMR, circular dichroism, and other biophysical approaches to demonstrate and characterize the binding of Zα to mRNA and rRNA fragments. Our results reveal a broad range of RNA sequences that bind to Zα and adopt Z-RNA conformations. Binding is accompanied by destabilization of neighboring A-form regions which is similar in character to what has been observed for B-Z-DNA junctions. The binding of Zα to non-CpG sequences is specific, cooperative and occurs with an affinity in the low micromolar range. This work allows us to propose a model for how Zα could influence the RNA binding specificity of ADAR1.
Related Products
Online Inquiry
Verification code
Inquiry Basket