5'-DMT-dA(Bz) CPG; 1000 Å

5'-DMT-dA(Bz) CPG; 1000 Å

Catalog number: BRL-017

5'-DMT-dA(Bz) CPG is a CPG used for incorporating unmodified dA at the 3' end of an oligonucleotide.

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.
Appearance
White powder
Storage
+2 to +8 °C.
Shipping
Room temperature.
Cleavage Conditions
Use concentrated ammonia for 90 min at 25°C or 30 min at 60°C, or 1:1 ammonia:methylamine (AMA) for 25 min at 25°C when using fast deprotecting amidites.
Deprotection Conditions
When using fast deprotecting amidites (e.g., C-Ac; G-DMF; G-PAC), please use concentrated ammonia for 1h or AMA for 30 min at 60°C. When using standard amidites (e.g., C-Bz; G-iBu), please use concentrated ammonia for 5h at 60°C.

Reference Reading

1. The role of methylation in the intrinsic dynamics of B- and Z-DNA
Nuri A Temiz, Duncan E Donohue, Albino Bacolla, Brian T Luke, Jack R Collins. PLoS One. 2012;7(4):e35558. doi: 10.1371/journal.pone.0035558.
Methylation of cytosine at the 5-carbon position (5 mC) is observed in both prokaryotes and eukaryotes. In humans, DNA methylation at CpG sites plays an important role in gene regulation and has been implicated in development, gene silencing, and cancer. In addition, the CpG dinucleotide is a known hot spot for pathologic mutations genome-wide. CpG tracts may adopt left-handed Z-DNA conformations, which have also been implicated in gene regulation and genomic instability. Methylation facilitates this B-Z transition but the underlying mechanism remains unclear. Herein, four structural models of the dinucleotide d(GC)(5) repeat sequence in B-, methylated B-, Z-, and methylated Z-DNA forms were constructed and an aggregate 100 nanoseconds of molecular dynamics simulations in explicit solvent under physiological conditions was performed for each model. Both unmethylated and methylated B-DNA were found to be more flexible than Z-DNA. However, methylation significantly destabilized the BII, relative to the BI, state through the Gp5mC steps. In addition, methylation decreased the free energy difference between B- and Z-DNA. Comparisons of α/γ backbone torsional angles showed that torsional states changed marginally upon methylation for B-DNA, and Z-DNA. Methylation-induced conformational changes and lower energy differences may contribute to the transition to Z-DNA by methylated, over unmethylated, B-DNA and may be a contributing factor to biological function.
2. Sustained TNF-α stimulation leads to transcriptional memory that greatly enhances signal sensitivity and robustness
Zuodong Zhao, Zhuqiang Zhang, Jingjing Li, Qiang Dong, Jun Xiong, Yingfeng Li, Mengying Lan, Gang Li, Bing Zhu. Elife. 2020 Nov 6;9:e61965. doi: 10.7554/eLife.61965.
Transcriptional memory allows certain genes to respond to previously experienced signals more robustly. However, whether and how the key proinflammatory cytokine TNF-α mediates transcriptional memory are poorly understood. Using HEK293F cells as a model system, we report that sustained TNF-α stimulation induces transcriptional memory dependent on TET enzymes. The hypomethylated status of transcriptional regulatory regions can be inherited, facilitating NF-κB binding and more robust subsequent activation. A high initial methylation level and CpG density around κB sites are correlated with the functional potential of transcriptional memory modules. Interestingly, the CALCB gene, encoding the proven migraine therapeutic target CGRP, exhibits the best transcriptional memory. A neighboring primate-specific endogenous retrovirus stimulates more rapid, more strong, and at least 100-fold more sensitive CALCB induction in subsequent TNF-α stimulation. Our study reveals that TNF-α-mediated transcriptional memory is governed by active DNA demethylation and greatly sensitizes memory genes to much lower doses of inflammatory cues.
3. Methylation of immune-regulatory cytokine genes and pancreatic cancer outcomes
Brian Z Huang , Alexandra M Binder, Catherine A Sugar, Chun R Chao, Veronica Wendy Setiawan, Zuo-Feng Zhang. Epigenomics. 2020 Aug;12(15):1273-1285. doi: 10.2217/epi-2019-0335.
Aim: Given the immunosuppressive nature of pancreatic cancer, we investigated the relationship between epigenetic modification of immune-regulatory cytokine genes and pancreatic cancer outcomes. Materials & methods: We evaluated DNA methylation of 184 pancreatic tumor samples from The Cancer Genome Atlas for 111 CpG loci in seven cytokine genes: IL10, IL6, IL8, TGFβ1, TGFβ2, TGFβ3 and TNF. We used Cox regression to evaluate the associations between methylation and overall survival, disease-specific survival and disease progression (α = 0.05). Results: Poorer survival was associated with increased methylation in fifteen CpG probes in TGFβ1, TGFβ2, TGFβ3 and TNF. We also detected improved outcomes for three loci in IL10, IL8 and IL6. Conclusion: Epigenetic regulation of cytokine-related gene expression may be associated with pancreatic cancer outcomes.
Related Products
Online Inquiry
Verification code
Inquiry Basket