5'-DMT-dA(Bz)-Suc-CPG; 500 Å (Hi Load)

5'-DMT-dA(Bz)-Suc-CPG; 500 Å (Hi Load)

Catalog number: BRL-022

5'-DMT-dA(Bz)-Suc-CPG is used for incorporating unmodified dA at the 3' end of an oligonucleotide.

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.
Appearance
White powder
Storage
+2 to +8 °C.
Shipping
Room temperature.
Cleavage Conditions
Use concentrated ammonia for 90 min at 25°C or 30 min at 60°C, or 1:1 ammonia:methylamine (AMA) for 25 min at 25°C when using fast deprotecting amidites.
Deprotection Conditions
When using fast deprotection amidites (such as C-Ac; G-DMF), use concentrated ammonia at 60°C for 1h or AMA for 30 min. When using standard amidites (such as C-Bz; G-iBu), please use concentrated ammonia at 60°C for 5h.

Reference Reading

1. Genotoxicity of benzene and its metabolites
John Whysner, M Vijayaraj Reddy, Peter M Ross, Melissa Mohan, Elizabeth A Lax. Review. 2004 Mar;566(2):99-130. doi: 10.1016/s1383-5742(03)00053-x.
The potential role of genotoxicity in human leukemias associated with benzene (BZ) exposures was investigated by a systematic review of over 1400 genotoxicity test results for BZ and its metabolites. Studies of rodents exposed to radiolabeled BZ found a low level of radiolabel in isolated DNA with no preferential binding in target tissues of neoplasia. Adducts were not identified by 32P-postlabeling (equivalent to a covalent binding index <0.002) under the dosage conditions producing neoplasia in the rodent bioassays, and this method would have detected adducts at 1/10,000th the levels reported in the DNA-binding studies. Adducts were detected by 32P-postlabeling in vitro and following high acute BZ doses in vivo, but levels were about 100-fold less than those found by DNA binding. These findings suggest that DNA-adduct formation may not be a significant mechanism for BZ-induced neoplasia in rodents. The evaluation of other genotoxicity test results revealed that BZ and its metabolites did not produce reverse mutations in Salmonella typhimurium but were clastogenic and aneugenic, producing micronuclei, chromosomal aberrations, sister chromatid exchanges and DNA strand breaks. Rodent and human data were compared, and BZ genotoxicity results in both were similar for the available tests. Also, the biotransformation of BZ was qualitatively similar in rodents, humans and non-human primates, further indicating that rodent and human genotoxicity data were compatible. The genotoxicity test results for BZ and its metabolites were the most similar to those of topoisomerase II inhibitors and provided less support for proposed mechanisms involving DNA reactivity, mitotic spindle poisoning or oxidative DNA damage as genotoxic mechanisms; all of which have been demonstrated experimentally for BZ or its metabolites. Studies of the chromosomal translocations found in BZ-exposed persons and secondary human leukemias produced by topoisomerase II inhibitors provide some additional support for this mechanism being potentially operative in BZ-induced leukemia.
2. Artificial temperature-compensated biological clock using temperature-sensitive Belousov-Zhabotinsky gels
Yuhei Yamada, Hiroshi Ito, Shingo Maeda. Sci Rep. 2022 Dec 27;12(1):22436. doi: 10.1038/s41598-022-27014-z.
The circadian rhythm is a fundamental physiological function for a wide range of organisms. The molecular machinery for generating rhythms has been elucidated over the last few decades. Nevertheless, the mechanism for temperature compensation of the oscillation period, which is a prominent property of the circadian rhythm, is still controversial. In this study, we propose a new mechanism through a chemically synthetic approach (i.e., we realized temperature compensation by the Belousov-Zhabotinsky (BZ) gels). The BZ gels are prepared by embedding a metal catalyst of the BZ reaction into the gel polymer. We made the body of BZ gels using a temperature-sensitive polymer gel, which enabled temperature compensation of the oscillation by using temperature dependence of volume. Moreover, we constructed a simple mathematical model for the BZ oscillation in temperature-sensitive gels. The model can reproduce temperature compensation of BZ gels, even though all reactions are temperature sensitive according to the Arrhenius rule. Our finding hints that a soft body coupling may be underlying temperature-compensated biological functions, including circadian rhythms.
3. Periodical propagation of torsion in polymer gels
Yuhei Yamada, Yuji Otsuka, Zebing Mao, Shingo Maeda. Sci Rep. 2022 Oct 6;12(1):16679. doi: 10.1038/s41598-022-21198-0.
Gel actuators have potential in soft robotics. Although gel actuators can realize various motions like contraction, expansion, and bending, most require external inputs such as batteries and circuits. Herein we propose a periodical torsional motion hydrogel driven by chemical energy from the Belousov-Zhabotinsky (BZ) reaction. Our BZ gel system exhibits autonomous motion without a battery. The elastic moduli of the redox states of the BZ gel are investigated using stress-strain analysis. An experimental system, which integrates the BZ gel and two PDMS (dimethylpolysiloxane) rotators, is designed to evaluate torsion angles. The experimental pre-twist angle dependence of the rotary motion is compared with a theoretical rotation model. The results agree qualitatively. This study should contribute to the development of soft actuators without external components.
Related Products
Online Inquiry
Verification code
Inquiry Basket